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Abstract—It has been observed that the evolution of complex
networks such as social networks is not a random process, there
exist some key features which are responsible for their evolution.
One such feature is the degree distribution of these networks
which follow the power law i.e. P (k) ∝ k−γ where γ is a
parameter whose value is typically in the range 2 < γ < 3 and
such networks are called scale-free networks [4]. In this paper,
we formulate a model for generating scale-free networks based
on Barabási-Albert model [6], using insights from elementary
Euclidean Geometry that takes into account the geometrical
location of the nodes instead of their degrees for new connections.
We show that our model generates scale-free networks experi-
mentally and provide a mathematical proof for the correctness
of the fact that the degree distribution in generated networks
indeed follows the power law. We also validate our model on
Erdös collaboration network of mathematicians.

Index Terms—Scale-free networks, Power law, Degree distri-
bution, Erdös collaboration network

1. INTRODUCTION

We witness different types of social networks around us
which influence our lives. The dynamics of these social
networks change with time as nodes and connections get
modified. Understanding how these social networks evolve
has interested researchers in recent years, mainly due to the
massive growth of online social networks [2] [3]. It has been
observed that the process of evolution of these social networks
is not a random process, there are some key features which
are responsible for the evolution process.

One of the key features of the social networks is the degree
distribution which follows the power law i.e. P (k) ∝ k−γ

where γ is a parameter whose value is typically in the range 2
< γ < 3 and hence are called scale-free networks [4]. Figure
1.1 shows the degree distribution of a network following power
law on the log-log plot. The power law degree distribution
explains the formation of hubs and small-world phenomenon
in social networks.

Various models have been proposed by researchers to
explain the formation of scale-free networks [1]. But the
most widely known model for generating scale-free networks
is the Barabási-Albert model using preferential attachment
mechanism [6]. In this paper, we formulate a model for
generating scale-free networks based on the Barabási-Albert
model that takes into account the geometrical location of the
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Fig. 1.1: Degree distribution of a network following power law
on the log-log plot.

nodes instead of their degrees for new connections. We show
that our model generates scale-free networks experimentally
and provide a mathematical proof for the correctness of the
fact that the degree distribution in generated networks indeed
follows the power law. We also validate our model on Erdös
collaboration network of mathematicians.

2. RELATED WORK

Derek de Solla Price [5] showed that the number of citations
of papers follows a heavy-tailed degree distribution. He named
the reason behind the heavy-tailed degree distribution as
cumulative advantage, which is today more commonly known
as preferential attachment. Later this property of heavy-tailed
distribution was replaced with power law distribution, and the
networks which followed it were called scale-free networks.
This term was introduced in the Barabási-Albert model [4].
They proposed a model to show the formation of scale-
free networks. With an initial network of m0 nodes, at each
iteration, a new node comes and gets connected to exactly
m previously present nodes. The probability by which node
i is chosen for connection is given by pi = ki∑

j kj
where

ki is the degree of node i and the denominator defines the
sum of degrees of all preexisting nodes [6]. Random graph
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model, proposed by Erdős and Rényi, shows the formation of
random graphs [7]. The graph is generated by initially having
m nodes and the edges are added between two nodes with
a probability p. In random graphs, the degree of each node
lies around the average degree of the graph. But in the case
of scale-free networks, if a node is chosen randomly from
the network, then its degree can be very small or very large
i.e. it does not have a meaningful internal scale hence they
are scale-free [8]. Qinghua Chen and Dinghua Shi proposed
an extension to Barabási-Albert model. They proposed two
models named A and B. In model A, at each time step a
new node gets connected with m existing nodes and new
links are also added within the existing network. In model
B, the same evolution rules as in Barabási-Albert model
was used with the addition that some old links were deleted
with anti-preferential probability. They showed that both the
models generate scale-free networks [9]. S. S. Manna and
P. Sen analyzed how the scale-free networks defined on the
Euclidean space behaves when the probability in Barabási-
Albert model is added with a length parameter lα [10]. Artikov
et al. suggested an approach for generating scale-free networks
based on factorization methods and geographical threshold
models in which two nodes are connected if they are spatially
close and/or have large weights [11].

3. THE PROPOSED MODEL

A. Preliminaries

We represent the network as an undirected graph G(V, E)
where nodes(V) represent the network members and edges(E)
represent the connections among them. In our model, we add
one node at every iteration. Initially, we say that m0 nodes are
present in the network and at each time step a new node is
coming and getting connected to m previously present nodes.

We have assumed that the nodes are distributed on a 2-D
plane. The 2-D plane in our case is an nxn grid. The nodes
are distributed as points on this grid. Initially, we start with
nxn grid on which we distribute the nodes. The nodes are
distributed in such a way that less number of nodes are present
around the center and more number of nodes are present at
the corners of the grid. The probability of placement of these
nodes is given as.

p(node i) =
1√

1 +|rad− ri|
(3.1)

where rad is the radius of the circle inscribed in the grid
and ri is the Euclidean distance of nodei from the center.
The intuition behind this is to make the distribution in such
a way that the probability of placing a node increases as
we move away from the center. The function

√
1 +|rad− r|

decreases as r increases up-to a point and then increases as
rad is a constant. Hence as we move away from the center
the probability of placing a node increases. Figure 3.1 shows
the placement of nodes on the grid.

Fig. 3.1: Placement of nodes on the grid

B. Process of evolution

In our model, initially m0 nodes are present on the grid. We
start from the center of the grid and traverse in spiral order
towards the corners. At each time step t, a new node is added
and connected with m previously present nodes. Lemma 3.1
shows the relation between the jth node in the spiral traversal
and its Euclidean distance from the center.

Lemma 3.1. Let s(j) be the jth node in the spiral traversal
with coordinates as x(j) and y(j) and r be the Euclidean
distance from the center of the grid then r =

√
x(j)2 + y(j)2.

Proof. In the grid, starting from the center we move in the
spiral order and whenever a new node arrives, it is connected
to m previously present nodes. Figure 3.2 represents the spiral
traversal. Let j be a positive integer representing the spiral
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Fig. 3.2: Spiral Traversal

traversal order starting at j = 1 from the center of the grid,
which is our origin, i.e. (0, 0). The traversal pattern is.

RDLLUU︸ ︷︷ ︸
1st block

+RRRDDDLLLLUUUU︸ ︷︷ ︸
2nd block

+....

733



where R, D, L, U represents right, down, left and up respec-
tively. Let us call each RDLU group a block, as shown in
above pattern. The first block is the intial RDLLUU , second
block is RRRDDDLLLLUUUU and so on. We can see that
the kth block consist of the following steps.

R2k-1D2k-1L2kU 2k (3.2)

The net effect of the above steps, i.e. a single block, is to move
one step up and left on the grid, which can also be verified
from the figure 3.2. Since our starting position is (0, 0), after
the traversal of k blocks, we would have moved to (−k, k)
on the grid. We can also deduce from equation 3.2 that the
total number of steps traversed after the completion of first k
blocks is given by.

T = 2k(2k + 1) (3.3)

Given the spiral traversal order j, we can find the block
in which the corresponding node lies using the following
algorithm.

Algorithm 1 Algorithm to find the block

m← b
√
jc

if m is odd then
block = 1

2 (m− 1) + 1
else

if j > m(m+ 1) then
block = m

2 + 1
else
block = m

2
end if

end if

Let us assume that the jth node in the spiral traversal is in
the (k + 1)th block. That means, it has already traversed first
k blocks. Hence we can say that, the x and y coordinates of
jth node is j − (2k(2k + 1)) steps ahead of (−k, k). Using
this fact, we can compute x(j) and y(j) coordinates of the jth

node in spiral traversal as.

x(j) =


j − 4k2 − 3k − 1 if 2k(k + 1) < j ≤ (2k + 1)2

k + 1 if (2k + 1)2 < j ≤ 2(k + 1)(2k + 1)

4k2 + 7k + 4− j if 2(k + 1)(2k + 1) < j ≤ 4(k + 1)2

−k − 1 if 4(k + 1)2 < j ≤ 2(k + 1)(2k + 3)

y(j) =


k if 2k(k + 1) < j ≤ (2k + 1)2

4k2 + 5k + 2− j if (2k + 1)2 < j ≤ 2(k + 1)(2k + 1)

−k − 1 if 2(k + 1)(2k + 1) < j ≤ 4(k + 1)2

j − 4k2 − 9k − 6 if 4(k + 1)2 < j ≤ 2(k + 1)(2k + 3)

Hence after finding the coordinates x(j) and y(j), we can
represent the Euclidean distance r in terms of j as.

r =
√
x(j)2 + y(j)2 (3.4)

Each new node is getting connected to m previously present
nodes with probability s.t its likelihood of getting connected

(a)

(b)

(c)

Fig. 3.3: Evolution of network. White circles are the newly
added nodes which are getting connected with m = 2
previously present nodes.

to nodes which are closer to center of the grid is more as
compared to other nodes. In this way we try to ensure the
preferential attachment based on the geometrical location in
our model. Hence at time t the probability that the new node
chooses some previously present node i is given by.

Π(node i) =
1
ri∑t−1
j=1

1
rj

(3.5)

where ri represents the Euclidean distance of node i from
the center of the grid and the denominator defines the sum
of Euclidean distance of all preexisting nodes. So, each time
a new node comes, m nodes are chosen with the above
probability for the connections. Figure 3.3 shows the evolution
of network where m = 2 connections are made with the new
incoming node at each time step.
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4. EXPERIMENTS AND RESULTS

For the experimental purpose, we made a tool replicating
our model in Python language. In each experiment, we gener-
ate a grid of size nxn and distribute the nodes according to the
equation 3.1. The spiral traversal starts from the center of the
grid and moves towards the corners. At each time step, a new
node is connected to m previously present nodes according
to equation 3.5. Our result shows that the generated networks
are scale-free as their degree distribution on the log-log plot is
linear. Figure 4.1 shows the degree distribution of a network
generated by our model on the log-log plot.
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Fig. 4.1: Degree distribution of the generated network on the
log-log plot with 15202 nodes and 30398 edges.

5. MATHEMATICAL ANALYSIS

In this section, we will prove that the degree distribution
of generated networks follows the power law. The evolution
process starts with initial m0 nodes and at each iteration, a
new node is added to the network. We have assumed that the
number of connections made by the new node is always more
than or equal to 2 (m ≥ 2).

Lemma 5.1. The degree distribution of node i is given by
ki(t) = B( tti )n

Proof. Let ki be the degree distribution of node i and a real
time dependent variable. Then the rate of acquiring links by
node i is given by the following equation.

∂ki
∂t

= mΠ(node i) = m
1
ri∑t−1
j=1

1
rj

(5.1)

where m represents the number of links a new node connects
with. We know that the size of grid is nxn hence we can say
that rj < n. Thus we rewrite equation 5.1 as.

∂ki
∂t

= m
1
ri∑t−1
j=1

1
rj

< m
1
ri∑t−1
j=1

1
n

(5.2)

Summing the denominator of equation 5.2 over t− 1, we get.

∂ki
∂t

< m
1
ri
t−1
n

(5.3)

for large values of t we cen neglect −1 term, hence equation
5.3 becomes.

∂ki
∂t

<
mn
ri

t
(5.4)

According to our rules of evolution m ≥ 2 and ri ≥ 1, thus
we can say that m

ri
≤ ki. Hence equation 5.4 becomes.

∂ki
∂t

<
nki
t

(5.5)

For some constant c, we can rewrite equation 5.5 as.

∂ki
∂t

+ c =
nki
t

(5.6)

Solving the differential equation in 5.6, with the initial con-
dition that node i joins the network at time ti and connects
with m nodes, we get.

ki(t) = A · t+B · ( t
ti

)n (5.7)

where A = c
n−1 and B = mn−m−cti

n−1 . For large values of t,
we can neglect A · t term, hence equation 5.7 becomes.

ki(t) = B(
t

ti
)n (5.8)

Lemma 5.2. The degree distribution of networks generated
by our model follows the power law.

Proof. First, we will calculate that given the degree distribu-
tion of node i at time t i.e. ki(t), what is the probability that
ki(t) < k, where k is some arbitrary positive integer. Hence
we can write.

P (ki(t) < k) = P (ti >
B

1
n t

k
1
n

) (5.9)

As described in the evolution process, we start the spiral
traversal with an initial m0 nodes on the grid, and at each
time step a new node with m connections is introduced in the
network. Using this fact, we can write the probability density
function of node i at time t as.

P (ti) =
1

m0 + t
(5.10)

Substituting the equation 5.10 in equation 5.9, we get.

P (ki(t) < k) = 1−P (ti ≤
B

1
n t

k
1
n

) = 1− B
1
n t

k
1
n (m0 + t)

(5.11)

Taking the derivative of equation 5.11 to get the probability
density.

P (k) =
∂P (ki(t) < k)

∂k
=

1

n
· B

1
n t

m0 + t
· 1

k
1
n+1

(5.12)

From equation 5.12, we can say that.

P (k) ∝ k−γ (5.13)

735



where γ is 1
n + 1. This shows that the networks generated by

our model follows power law distribution. This completes our
proof.

6. VALIDATION

In this section, we will validate our proposed model on a
real-world network, i.e. Erdös collaboration network.

A. Erdös Collaboration Network
Paul Erdös was one of the most prolific mathematicians of

20th century. He was known for wandering the world and
collaborating with mathematicians. The Erdös collaboration
network has as vertices all mathematicians, with an edge
joining u and v if u and v have published a joint research
paper. One of the nodes p of the network is Paul Erdös. The
distance from a vertex u to p is known as u′s Erdös number
[12]. The mathematicians who have collaborated with Paul
Erdös have Erdös number 1 and the mathematicians who have
collaborated with those mathematicians have Erdös number 2
and so on.

B. Dataset
In our experiment, we combined the datasets provided by

the National Institute of Standards and Technology and The
Erdös Number Project, Oakland University. We collected the
Erdös collaboration network of 2002 from NIST in the edgelist
format1. It contains 6927 mathematicians as vertices, including
Paul Erdös and 11850 edges representing coauthorship. The
names of all the mathematicians are also provided in the
dataset. To get the Erdös number of mathematicians we down-
loaded the dataset provided by The Erdös Number Project,
Oakland University containing names of all the coauthors of
Paul Erdös2. After combining both the dataset, a total of 507
mathematicians were found to have an Erdös number 1 in our
dataset, and rest all have Erdös number 2.

C. Experiments and Results
The degree distribution of Erdös collaboration network on

the log-log plot is shown in figure 6.1. Based on the degree
distribution we can say that the Erdös collaboration network
is scale-free. To validate our proposed grid based model
for generating scale-free networks, we modeled the Erdös
collaboration network on a grid where the center of the grid is
Paul Erdös and the Euclidean distance of nodes from the center
is represented as the Erdös number of the mathematicians.

Our results are positive as the highest degree node is at
the center, i.e. Paul Erdös and most of the other higher
degree nodes have Erdös number 1. Around 12847 degrees
are associated with just 507 nodes having Erdös number 1,
whereas only 10346 degrees are associated with 6420 nodes
having Erdös number 2. Thus we can see that, as we move
away from the center of the grid the degree distribution of
the nodes decreases drastically, as proposed in our model.
Therefore Erdös collaboration network validates our proposed
grid based model for generating scale-free networks.

1http://vlado.fmf.uni-lj.si/pub/networks/data/Erdos/Erdos02.net
2https://files.oakland.edu/users/grossman/enp/Erdos0.html

100 101 102

Degrees

10−4

10−3

10−2

10−1

100

F
ra

ct
io

n
o
f

n
o
d

e
s

Fig. 6.1: Degree distribution of the Erdös collaboration net-
work on the log-log plot with 6927 nodes and 11850 edges.

CONCLUSION

We have worked on the generation of scale-free networks.
To capture the notion of the evolution of these networks we
have formulated a grid based model. Unlike the Barabási-
Albert model, our model is not purely combinatorial but uses
insights from elementary Euclidean geometry. The experi-
ments gave positive results in which we saw that the degree
distribution of the generated networks follow the power law,
thus confirming that they are scale-free networks. We have
also proved its correctness. Further, the Erdös collaboration
network validated our model in the real world scenario. Our
model can also be used to explain the evolution of other com-
plex networks such as location-based online social networks,
airport networks, earthquake networks etc.
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